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Abstract

While traditional inertial fusion energy (IFE) target designs typically use equimolar portions of deuterium and tritium and have areal densities (r r) of ~ 3 g/cn?, significant safety and environmental (S& E) advantages may be obtained through the use
of high-density (r r ~ 10 g/cn?) targets with tritium components as low as 0.5%. Such targets would absorb much of the neutron energy within the target and could be salf-sufficient from atritium breeding point of view. Tritium self-sufficiency within
the target would free target chamber designers from the need to use lithium-bearing blanket materials, while low inventories within each target would translate into low inventories in target fabrication facilities. Although past work found such designsto
be impractical due to the large driver energies that would be needed to attain such high densities, recent work suggests that afast igniter technique may make such concepts viable at total driver energies of ~ 7-10 MJ.16 Additionally, ongoing target
designwork may increase coupling efficiencies to > 25% and further reduce required driver energiesto 4-5 MJ.” The absorption of much of the neutron energy within the target and the extremely low tritium inventories make "tritium-lean" targets appear
quite attractive from an S& E perspective.

Overview of Tritium-Lean Concept Parameters for Comparing Tritium-Lean Power Plant to HYLIFE-II
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A power plant utilizing tritium-lean targets might have a tritium
inventory 100" lessthan atraditional D-T power plant and
L designers may be able to avoid lithium-bearing materialsin the blanket. ) Comparison of S& E Features of Tritium-Lean and HYLIFE-I1 Power Plants
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Tritium-lean target breeding ratio = 1.38 — Tritium-lean components require 70 and 32 years, respectively, by First wall 0.36 1.51e+0 2.40e-1
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An additional 3.29 " 10'8 tritons/target are created in (n,T) reactions in the B,O, coolant g T . .
o _ _ — Recycling “limit” truly can be determined only with study of the Blanket 3.03 2 09e-2 1.496-3
Overall tritium breeding ratio =1.49 ultimate use of the recycled material aswell as the recycling process ' ' '
Dueto self-sufficiency of the target, a breeding blanket A power plant utilizing tritium-lean tar gets may offer significant
would not be needed in a power plant utilizing tritium-lean tar gets. S& E advantages over one using traditional tar gets.
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